## Powerball January 2009 Bucket Combination Distribution

The Powerball Lottery requires a player to make 2 choices: (1) Pick 5 numbers out of a set of 59 white balls; and (2) Pick 1 Power Ball from a set of 39 balls. If the player picks the same numbers as those that are drawn in the next drawing, the player wins the Jackpot prize.

While everyone says that every combination has an equal chance of winning, Lottery Power Picks and others, believe that certain combinations are more likely to occur than others.

The following Table summarize the occurances of the Lottery Ball Bucket Distribution of all Powerball combinations for the white balls.

The Powerball white balls are numbered 1 to 59. The player selects 5 of these numbers. The table below shows the probability of each of the balls falling within a decimal range: 0-9; 10-19; 20-29; 30-39; 40-49; and 50-59.
 Table PB-2a: Powerball Bucket Distribution - Jan 2009 Count Bucket 1-9 Bucket 10-19 Bucket 20-29 Bucket 30-39 Bucket 40-49 Bucket 50-59 Num Combos Pct Combos 1 5 0 0 0 0 0 126 0.0% 2 4 1 0 0 0 0 1,260 0.0% 3 4 0 1 0 0 0 1,260 0.0% 4 4 0 0 1 0 0 1,260 0.0% 5 4 0 0 0 1 0 1,260 0.0% 6 4 0 0 0 0 1 1,260 0.0% 7 3 2 0 0 0 0 3,780 0.1% 8 3 1 1 0 0 0 8,400 0.2% 9 3 1 0 1 0 0 8,400 0.2% 10 3 1 0 0 1 0 8,400 0.2% 11 3 1 0 0 0 1 8,400 0.2% 12 3 0 2 0 0 0 3,780 0.1% 13 3 0 1 1 0 0 8,400 0.2% 14 3 0 1 0 1 0 8,400 0.2% 15 3 0 1 0 0 1 8,400 0.2% 16 3 0 0 2 0 0 3,780 0.1% 17 3 0 0 1 1 0 8,400 0.2% 18 3 0 0 1 0 1 8,400 0.2% 19 3 0 0 0 2 0 3,780 0.1% 20 3 0 0 0 1 1 8,400 0.2% 21 3 0 0 0 0 2 3,780 0.1% 22 2 3 0 0 0 0 4,320 0.1% 23 2 2 1 0 0 0 16,200 0.3% 24 2 2 0 1 0 0 16,200 0.3% 25 2 2 0 0 1 0 16,200 0.3% 26 2 2 0 0 0 1 16,200 0.3% 27 2 1 2 0 0 0 16,200 0.3% 28 2 1 1 1 0 0 36,000 0.7% 29 2 1 1 0 1 0 36,000 0.7% 30 2 1 1 0 0 1 36,000 0.7% 31 2 1 0 2 0 0 16,200 0.3% 32 2 1 0 1 1 0 36,000 0.7% 33 2 1 0 1 0 1 36,000 0.7% 34 2 1 0 0 2 0 16,200 0.3% 35 2 1 0 0 1 1 36,000 0.7% 36 2 1 0 0 0 2 16,200 0.3% 37 2 0 3 0 0 0 4,320 0.1% 38 2 0 2 1 0 0 16,200 0.3% 39 2 0 2 0 1 0 16,200 0.3% 40 2 0 2 0 0 1 16,200 0.3% 41 2 0 1 2 0 0 16,200 0.3% 42 2 0 1 1 1 0 36,000 0.7% 43 2 0 1 1 0 1 36,000 0.7% 44 2 0 1 0 2 0 16,200 0.3% 45 2 0 1 0 1 1 36,000 0.7% 46 2 0 1 0 0 2 16,200 0.3% 47 2 0 0 3 0 0 4,320 0.1% 48 2 0 0 2 1 0 16,200 0.3% 49 2 0 0 2 0 1 16,200 0.3% 50 2 0 0 1 2 0 16,200 0.3% 51 2 0 0 1 1 1 36,000 0.7% 52 2 0 0 1 0 2 16,200 0.3% 53 2 0 0 0 3 0 4,320 0.1% 54 2 0 0 0 2 1 16,200 0.3% 55 2 0 0 0 1 2 16,200 0.3% 56 2 0 0 0 0 3 4,320 0.1% 57 1 4 0 0 0 0 1,890 0.0% 58 1 3 1 0 0 0 10,800 0.2% 59 1 3 0 1 0 0 10,800 0.2% 60 1 3 0 0 1 0 10,800 0.2% 61 1 3 0 0 0 1 10,800 0.2% 62 1 2 2 0 0 0 18,225 0.4% 63 1 2 1 1 0 0 40,500 0.8% 64 1 2 1 0 1 0 40,500 0.8% 65 1 2 1 0 0 1 40,500 0.8% 66 1 2 0 2 0 0 18,225 0.4% 67 1 2 0 1 1 0 40,500 0.8% 68 1 2 0 1 0 1 40,500 0.8% 69 1 2 0 0 2 0 18,225 0.4% 70 1 2 0 0 1 1 40,500 0.8% 71 1 2 0 0 0 2 18,225 0.4% 72 1 1 3 0 0 0 10,800 0.2% 73 1 1 2 1 0 0 40,500 0.8% 74 1 1 2 0 1 0 40,500 0.8% 75 1 1 2 0 0 1 40,500 0.8% 76 1 1 1 2 0 0 40,500 0.8% 77 1 1 1 1 1 0 90,000 1.8% 78 1 1 1 1 0 1 90,000 1.8% 79 1 1 1 0 2 0 40,500 0.8% 80 1 1 1 0 1 1 90,000 1.8% 81 1 1 1 0 0 2 40,500 0.8% 82 1 1 0 3 0 0 10,800 0.2% 83 1 1 0 2 1 0 40,500 0.8% 84 1 1 0 2 0 1 40,500 0.8% 85 1 1 0 1 2 0 40,500 0.8% 86 1 1 0 1 1 1 90,000 1.8% 87 1 1 0 1 0 2 40,500 0.8% 88 1 1 0 0 3 0 10,800 0.2% 89 1 1 0 0 2 1 40,500 0.8% 90 1 1 0 0 1 2 40,500 0.8% 91 1 1 0 0 0 3 10,800 0.2% 92 1 0 4 0 0 0 1,890 0.0% 93 1 0 3 1 0 0 10,800 0.2% 94 1 0 3 0 1 0 10,800 0.2% 95 1 0 3 0 0 1 10,800 0.2% 96 1 0 2 2 0 0 18,225 0.4% 97 1 0 2 1 1 0 40,500 0.8% 98 1 0 2 1 0 1 40,500 0.8% 99 1 0 2 0 2 0 18,225 0.4% 100 1 0 2 0 1 1 40,500 0.8% 101 1 0 2 0 0 2 18,225 0.4% 102 1 0 1 3 0 0 10,800 0.2% 103 1 0 1 2 1 0 40,500 0.8% 104 1 0 1 2 0 1 40,500 0.8% 105 1 0 1 1 2 0 40,500 0.8% 106 1 0 1 1 1 1 90,000 1.8% 107 1 0 1 1 0 2 40,500 0.8% 108 1 0 1 0 3 0 10,800 0.2% 109 1 0 1 0 2 1 40,500 0.8% 110 1 0 1 0 1 2 40,500 0.8% 111 1 0 1 0 0 3 10,800 0.2% 112 1 0 0 4 0 0 1,890 0.0% 113 1 0 0 3 1 0 10,800 0.2% 114 1 0 0 3 0 1 10,800 0.2% 115 1 0 0 2 2 0 18,225 0.4% 116 1 0 0 2 1 1 40,500 0.8% 117 1 0 0 2 0 2 18,225 0.4% 118 1 0 0 1 3 0 10,800 0.2% 119 1 0 0 1 2 1 40,500 0.8% 120 1 0 0 1 1 2 40,500 0.8% 121 1 0 0 1 0 3 10,800 0.2% 122 1 0 0 0 4 0 1,890 0.0% 123 1 0 0 0 3 1 10,800 0.2% 124 1 0 0 0 2 2 18,225 0.4% 125 1 0 0 0 1 3 10,800 0.2% 126 1 0 0 0 0 4 1,890 0.0% 127 0 5 0 0 0 0 252 0.0% 128 0 4 1 0 0 0 2,100 0.0% 129 0 4 0 1 0 0 2,100 0.0% 130 0 4 0 0 1 0 2,100 0.0% 131 0 4 0 0 0 1 2,100 0.0% 132 0 3 2 0 0 0 5,400 0.1% 133 0 3 1 1 0 0 12,000 0.2% 134 0 3 1 0 1 0 12,000 0.2% 135 0 3 1 0 0 1 12,000 0.2% 136 0 3 0 2 0 0 5,400 0.1% 137 0 3 0 1 1 0 12,000 0.2% 138 0 3 0 1 0 1 12,000 0.2% 139 0 3 0 0 2 0 5,400 0.1% 140 0 3 0 0 1 1 12,000 0.2% 141 0 3 0 0 0 2 5,400 0.1% 142 0 2 3 0 0 0 5,400 0.1% 143 0 2 2 1 0 0 20,250 0.4% 144 0 2 2 0 1 0 20,250 0.4% 145 0 2 2 0 0 1 20,250 0.4% 146 0 2 1 2 0 0 20,250 0.4% 147 0 2 1 1 1 0 45,000 0.9% 148 0 2 1 1 0 1 45,000 0.9% 149 0 2 1 0 2 0 20,250 0.4% 150 0 2 1 0 1 1 45,000 0.9% 151 0 2 1 0 0 2 20,250 0.4% 152 0 2 0 3 0 0 5,400 0.1% 153 0 2 0 2 1 0 20,250 0.4% 154 0 2 0 2 0 1 20,250 0.4% 155 0 2 0 1 2 0 20,250 0.4% 156 0 2 0 1 1 1 45,000 0.9% 157 0 2 0 1 0 2 20,250 0.4% 158 0 2 0 0 3 0 5,400 0.1% 159 0 2 0 0 2 1 20,250 0.4% 160 0 2 0 0 1 2 20,250 0.4% 161 0 2 0 0 0 3 5,400 0.1% 162 0 1 4 0 0 0 2,100 0.0% 163 0 1 3 1 0 0 12,000 0.2% 164 0 1 3 0 1 0 12,000 0.2% 165 0 1 3 0 0 1 12,000 0.2% 166 0 1 2 2 0 0 20,250 0.4% 167 0 1 2 1 1 0 45,000 0.9% 168 0 1 2 1 0 1 45,000 0.9% 169 0 1 2 0 2 0 20,250 0.4% 170 0 1 2 0 1 1 45,000 0.9% 171 0 1 2 0 0 2 20,250 0.4% 172 0 1 1 3 0 0 12,000 0.2% 173 0 1 1 2 1 0 45,000 0.9% 174 0 1 1 2 0 1 45,000 0.9% 175 0 1 1 1 2 0 45,000 0.9% 176 0 1 1 1 1 1 100,000 2.0% 177 0 1 1 1 0 2 45,000 0.9% 178 0 1 1 0 3 0 12,000 0.2% 179 0 1 1 0 2 1 45,000 0.9% 180 0 1 1 0 1 2 45,000 0.9% 181 0 1 1 0 0 3 12,000 0.2% 182 0 1 0 4 0 0 2,100 0.0% 183 0 1 0 3 1 0 12,000 0.2% 184 0 1 0 3 0 1 12,000 0.2% 185 0 1 0 2 2 0 20,250 0.4% 186 0 1 0 2 1 1 45,000 0.9% 187 0 1 0 2 0 2 20,250 0.4% 188 0 1 0 1 3 0 12,000 0.2% 189 0 1 0 1 2 1 45,000 0.9% 190 0 1 0 1 1 2 45,000 0.9% 191 0 1 0 1 0 3 12,000 0.2% 192 0 1 0 0 4 0 2,100 0.0% 193 0 1 0 0 3 1 12,000 0.2% 194 0 1 0 0 2 2 20,250 0.4% 195 0 1 0 0 1 3 12,000 0.2% 196 0 1 0 0 0 4 2,100 0.0% 197 0 0 5 0 0 0 252 0.0% 198 0 0 4 1 0 0 2,100 0.0% 199 0 0 4 0 1 0 2,100 0.0% 200 0 0 4 0 0 1 2,100 0.0% 201 0 0 3 2 0 0 5,400 0.1% 202 0 0 3 1 1 0 12,000 0.2% 203 0 0 3 1 0 1 12,000 0.2% 204 0 0 3 0 2 0 5,400 0.1% 205 0 0 3 0 1 1 12,000 0.2% 206 0 0 3 0 0 2 5,400 0.1% 207 0 0 2 3 0 0 5,400 0.1% 208 0 0 2 2 1 0 20,250 0.4% 209 0 0 2 2 0 1 20,250 0.4% 210 0 0 2 1 2 0 20,250 0.4% 211 0 0 2 1 1 1 45,000 0.9% 212 0 0 2 1 0 2 20,250 0.4% 213 0 0 2 0 3 0 5,400 0.1% 214 0 0 2 0 2 1 20,250 0.4% 215 0 0 2 0 1 2 20,250 0.4% 216 0 0 2 0 0 3 5,400 0.1% 217 0 0 1 4 0 0 2,100 0.0% 218 0 0 1 3 1 0 12,000 0.2% 219 0 0 1 3 0 1 12,000 0.2% 220 0 0 1 2 2 0 20,250 0.4% 221 0 0 1 2 1 1 45,000 0.9% 222 0 0 1 2 0 2 20,250 0.4% 223 0 0 1 1 3 0 12,000 0.2% 224 0 0 1 1 2 1 45,000 0.9% 225 0 0 1 1 1 2 45,000 0.9% 226 0 0 1 1 0 3 12,000 0.2% 227 0 0 1 0 4 0 2,100 0.0% 228 0 0 1 0 3 1 12,000 0.2% 229 0 0 1 0 2 2 20,250 0.4% 230 0 0 1 0 1 3 12,000 0.2% 231 0 0 1 0 0 4 2,100 0.0% 232 0 0 0 5 0 0 252 0.0% 233 0 0 0 4 1 0 2,100 0.0% 234 0 0 0 4 0 1 2,100 0.0% 235 0 0 0 3 2 0 5,400 0.1% 236 0 0 0 3 1 1 12,000 0.2% 237 0 0 0 3 0 2 5,400 0.1% 238 0 0 0 2 3 0 5,400 0.1% 239 0 0 0 2 2 1 20,250 0.4% 240 0 0 0 2 1 2 20,250 0.4% 241 0 0 0 2 0 3 5,400 0.1% 242 0 0 0 1 4 0 2,100 0.0% 243 0 0 0 1 3 1 12,000 0.2% 244 0 0 0 1 2 2 20,250 0.4% 245 0 0 0 1 1 3 12,000 0.2% 246 0 0 0 1 0 4 2,100 0.0% 247 0 0 0 0 5 0 252 0.0% 248 0 0 0 0 4 1 2,100 0.0% 249 0 0 0 0 3 2 5,400 0.1% 250 0 0 0 0 2 3 5,400 0.1% 251 0 0 0 0 1 4 2,100 0.0% 252 0 0 0 0 0 5 252 0.0% 5,006,386 100.0

As shown in Table PB-2a, there are 252 different bucket combinations. The bucket with the fewest count is #1, where all 5 balls are in the range of 1-9. This is followed by buckets #127, #197, #232, #247, and #252, where all 5 balls fall within a single range of 10-19, 20-29, 30-39, 40-49, or 50-59 respectively. The largest concentration of combinations are those where 1 ball falls in a different bucket.

The table on the next page illustrates this same information, but is sorted from the highest concentration of balls to the smallest.

 Prev Powerball Table Next Powerball Table View Mega Millions Tables View Lotto 649 Tables View Lotto Max Tables